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Abstract

In this paper, we construct a framework for modeling hysteresis and constitutive nonlinearities in
ferroelectric compounds based on energy analysis at mesoscopic scales in combination with stochastic
homogenization techniques to construct macroscopic models. In the first step of the development,
previous analysis is used to construct Helmholtz and Gibbs energy relations at the lattice level. This
provides local polarization relations which can be extrapolated to provide constitutive models for
certain homogeneous, single crystal compounds. To incorporate material and field nonhomogeneities,
as well as the effects of polycrystallinity, certain parameters in the local models are assumed to be
manifestations of underlying distributions having densities which must be identified for a given
compound. Two techniques for estimating the unknown densities are presented, and the accuracy
of the resulting model is illustrated for both symmetric major loops and biased minor loops through
fits and predictions with experimental PZT4 and PZT5H data.
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1 Introduction

The use of ferroelectric compounds as actuators and sensors in high performance control applications
has burgeoned in recent years due to the high set point accuracy and broadband capabilities of the
materials. For example, piezoceramic rods or shells are employed as positioning mechanisms in
all present atomic force microscope (AFM) and scanning tunneling microscope (STM) designs to
achieve the nanoscale tolerances required by the devices [8, 26, 27] whereas relaxor ferroelectrics
have received significant attention as potential sonar transducers [7, 11] due to the large power
density to weight ratios exhibited by the materials. However, these advantages are accompanied
by several nonlinear material attributes — hysteresis is present in the piezoceramic materials at
all drive levels as shown in Figure 1 whereas relaxor ferroelectric compounds exhibit constitutive
nonlinearities and significant temperature-dependency for high drive level operation in anhysteretic
regimes. These nonlinear mechanisms must be accommodated in some manner to achieve the novel
control capabilities provided by these materials in high performance applications.

In many cases, feedback control loops can be designed to minimize nonlinear effects and this has
led to the successful use of piezoceramic and relaxor ferroelectric transducers for a broad range of
applications. However, this technique can be difficult to implement at moderate to high frequencies
where increasing noise-to-signal ratios and diminishing characteristics of high pass filters reduce the
effectiveness of control designs based solely on linear feedback laws. The use of charge or current
controlled amplifiers can also mitigate the majority of hysteresis and constitutive nonlinearities ex-
hibited by ferroelectric materials [17, 18]. This can be expensive, however, when compared with
the more common voltage-controlled amplifiers, and current-controlled amplifiers cannot maintain
DC offsets as required by numerous applications — e.g., the x-state in an AFM must hold a fixed
position during sweeps in the y-stage. This motivates the development of model-based frameworks
which are sufficiently accurate to quantify field, temperature, stress, and rate-dependent attributes
of ferroelectric materials and sufficiently efficient to permit real-time implementation.

The PZT5H data, plotted in Figure 1, illustrates a number of the attributes which comprehensive
models must encompass for low frequency, fixed-temperature, fixed-stress regimes. At low field levels,
the materials exhibit a quadratic Raleigh loop behavior whereas they exhibit saturation nonlinearities
and significant hysteresis at large field levels. In quasistatic and low frequency regimes, models must
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Figure 1: Quasistatic PZT5H data collected at 0.2 Hz including a symmetric major loop, a symmetric
Rayleigh loop, and biased minor loops.
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guarantee closure of biased minor loops and enforce the ‘deletion’ or ‘wiping out’ property as minor
loops are exited while including mechanisms to address accommodation and after-effects (relation
phenomena). Additionally, the materials exhibit stress, frequency and temperature-dependencies
which we address only peripherally in subsequent discussion.

As detailed in [30, 31, 32], there exist a broad range of techniques for modeling hysteresis in
ferroelectric compounds including microscopic models [23] and both energy-based and purely phe-
nomenological macroscopic models. We focus on the latter category to accommodate the emphasis
on transducer and control design.

Representative examples of energy-based modeling frameworks are the domain wall theory pre-
sented in [30, 31], the theory of Chen and Lynch [4] and Huang and Tiersten [12], and the homogenized
free energy theory [32]. All of these approaches have both strengths and weaknesses depending upon
the operating regimes. For example, the domain wall models are highly efficient for quantifying
symmetric major loops but require significant extension to guarantee minor loop closure without a
priori knowledge of turning points which, unfortunately, will be the case in feedback control appli-
cations. The purely phenomenological models include Preisach models which were developed in the
context of magnetic materials [24] and have been widely employed for a vast range of applications
[2, 3] including ferroelectric materials [10, 25]. The advantage of the Preisach approach lies in its
generality and rigorous mathematical foundation. It has the disadvantage that this generality often
precludes the use of physical measurements to identify parameters or update parameters to accom-
modate changing operating conditions. Furthermore, the classical Preisach theory must be modified
in the manner described in [9] for magnetic materials to accommodate measured reversible effects,
noncongruency, and temperature, stress and rate-dependencies.

The theory presented here combines aspects of the homogenized free energy theory of [32] and
Preisach models posed in terms of general densities or measures. In the theory of [32], Helmholtz
and Gibbs energy relations are constructed at the lattice, or mesoscopic, level and Boltzmann theory
is employed to construct local polarization relations. To construct macroscopic models, it is assumed
that local coercive and effective fields are manifestations of underlying lognormal and normal den-
sities. Stochastic homogenization in this manner provides constitutive models for the E-P relation
which quantify hysteresis and certain material nonlinearities exhibited by ferroelectric materials.
However, the models have limited accuracy for certain materials due to the restrictions imposed
through the a priori assumption of lognormal and normal densities.

In this paper, we reformulate the modeling framework in terms of general densities to be identified
through a fit to measured data from a given compound. We also present three identification strategies
and illustrate the performance of the model through comparison and prediction of PZT4 and PZT5H
data.

The formulation of Preisach models in terms of stochastically homogenized free energy mod-
els was first proposed in [33] and the proposed framework extends this analysis. The construction
of hysterons or kernels from energy principles has the advantage that it includes reversible effects
directly and incorporates certain temperature and rate effects in the basis rather than in the densi-
ties or parameters as is the case for classical Preisach models. Stochastic homogenization through
formulation in terms of general densities, as motivated by Preisach models, provides models with sig-
nificant accuracy and flexibility. The resulting models guarantee the closure of biased minor loops in
quasistatic or low frequency conditions but include mechanisms which characterize accommodation
(reptation) and after-effect (relaxation) phenomena. Hence the framework incorporates a number
of the phenomena exhibited by ferroelectric materials while providing the efficiency required for
eventual implementation.

From the perspective of model-based control design, construction in terms of general densities
provides the important advantage that models exhibit a linear dependence on the parameters as
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compared with the nonlinear dependence which results from the a priori choice of lognormal and
normal densities. This permits consideration of a wide range of linear adaptive identification and
control strategies in the former case whereas nonlinear adaptive identification strategies of the type
developed in [22] are required in the latter case and few options exist for adaptive control.

2 Free Energy Model for Polycrystalline Compounds

We summarize here the hysteresis models developed in [32] for nonhomogeneous, polycrystalline
ferroelectric compounds. In the first step of the model development, Helmholtz and Gibbs energy
relations are constructed at the lattice level to quantify the balance between the internal and elec-
trostatic energies. In the absence of thermally induced relaxation mechanisms, minima of the Gibbs
relations provides a mesoscopic polarization model whereas a balance of the thermal and Gibbs energy
through Boltzmann principles is employed for regimes in which relaxation or rate-dependent phe-
nomena are significant. For homogeneous, single crystal compounds, the mesoscopic models derived
through either set of assumptions can be applied throughout the material to provide a macroscopic
model quantifying the hysteresis and constitutive nonlinearities inherent to ferroelectric materials.
For nonhomogeneous, polycrystalline materials, variations in the lattice are incorporated by assuming
that certain parameters in the mesoscopic Gibbs relations are manifestations of underlying distri-
butions rather than constant values. In the models derived in [32] and summarized in this section,
we make the a priori assumption that the local coercive fields Ec are distributed with a lognormal
density whereas effective fields are assumed to be normally distributed about the applied field E.
The first assumption enforces the positivity of Ec whereas the second is based on the tenet that local
dipole interactions satisfy the central limit theorem. As illustrated in the examples of Section 4 and
[32], the resulting macroscopic models accurately quantify the hysteresis and constitutive nonlinear-
ities for PZT5A and PZT5H in symmetric drive regimes but have limited accuracy for hard PZT4
compounds or drive regimes yielding multiple, biased minor loops.

In Section 3, we relax the assumption that Ec and Ei have lognormal and normal densities and
consider instead the formulation of the model in terms of general densities ν to be identified through
a fit to data for a given material. While this requires additional complexity when constructing the
model, it yields superior accuracy when characterizing general ferroelectric compounds in complex
drive regimes.

2.1 Mesoscopic Polarization Models

For fixed temperature regimes, it is illustrated in [32] that an appropriate construct for the Helmholtz
energy at the lattice level is

ψ(P ) =


1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI .

(1)

Here PI and PR respectively denote the inflection point in the C1 energy relation and the positive
point at which a minimum of ψ occurs as depicted in Figure 2. The relation (1) quantifies the internal
energy at the lattice level in the absence of applied fields.

To incorporate the work due to applied fields E, we also consider the Gibbs energy relation

G(E, P ) = ψ(P )− EP (2)
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Figure 2: Helmholtz energy ψ and Gibbs energy G for increasing field E (E2 > E1 > 0). (b) Depen-
dence of the local average magnetization P on the field in the absence of thermal activation.

where the latter term incorporates the potential energy U = −p ·E of a dipole p in a uniaxial field.
In the absence of an applied stress σ, the Gibbs relation (2) characterizes the energy landscape in
homogeneous, polycrystalline materials.

To quantify the local average polarization P depicted in Figure 2(b), we consider two cases:
(i) drive regimes in which relaxation mechanisms are negligible, and (ii) regimes in which thermally-
induced relaxation is sufficiently prominent to warrant inclusion in the model.

In the absence of thermal relaxation, the necessary conditions ∂G
∂P = 0, ∂2G

∂P 2 > 0 are invoked to
yield the general relation

P =
1
η
E + δPR (3)

for the local average polarization. Here δ = 1 for positively oriented dipoles and δ = −1 for
negative orientations. The expression (3) illustrates that PR can be interpreted as a local or lattice-
level remanence value whereas η is the reciprocal slope ∂E

∂P after switching. To quantify the dipole
orientations formally indicated by δ, we employ the Preisach notation (e.g., see [2])

[P (E; Ec, ξ)](t) =


[P (E; Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec.

(4)

Here

[P (E; Ec, ξ)](0) =


E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

(5)

denotes the initial dipole distribution and transition times are designated by

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec} (6)

where Tf denotes the final time under consideration. The dependence of the kernel P on the local
coercive field Ec is indicated as a prelude to the discussion in Section 2.2 where Ec is assumed to be
distributed.
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For operating regimes in which relaxation mechanisms are significant, it is necessary to balance
the Gibbs energy G with the relative thermal energy kT/V — where k denotes Boltzmann’s constant
— through the Boltzmann relation

µ(G) = Ce−GV/kT . (7)

It is observed that the probability µ of obtaining an energy level G is increased when the magnitude
of kT/V approaches that of G. The constant C is chosen to ensure a probability of one for integration
over all possible dipole orientations.

If we let x+ and x− denote the fractions of dipoles having positive and negative orientations, and
let 〈P+〉 and 〈P−〉 denote the average expected polarizations associated with the two orientations,
the local average polarization at the lattice level is

P = x+ 〈P+〉+ x− 〈P−〉 . (8)

Since the expected polarization values are obtained by integrating the product Pµ(G(P )) over all
admissible configurations, it follows that

〈P+〉 =

∫ ∞

PI

Pe−G(E,P,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

. (9)

The denominator results from the evaluation of the integration constant C whereas it is illustrated in
[32] that the use of the inflection points ±PI , to simplify evaluation of the integrals, can be justified
though either asymptotic analysis or energy arguments.

Debye arguments yield the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(10)

quantifying the evolution of the respective dipole fractions. For implementation, the relations (10)
can be simplified to the single differential equation

ẋ+ = −p+−x+ + p−+(1− x+) (11)

through the identity x+ + x− = 1.
The likelihoods of switching from positive to negative orientations, or vice versa, are respectively

quantified by

p+− =
1

T (T )

∫ PI+ε

PI

e−G(E,PI ,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, p−+ =
1

T (T )

∫ −PI

−PI−ε
e−G(E,−PI ,T )V/kT dP∫ −PI

−∞
e−G(E,P,T )V/kT dP

(12)

where ε is taken to be a small positive constant. The relaxation term T quantifies the frequency
at which jumps are attempted whereas the remainder of the definition characterizes the probability
of achieving the energy required to exit respective potential wells. It is detailed in [32] that this
probability increases when the relative thermal energy kT/V approaches the Gibbs energy G. For
regimes in which kT/V << G, it is also illustrated that the average local polarization relation (8)
asymptotically limits to the expressions (3) or (4) employed for negligible thermal relaxation.
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The polarization relations (4) and (8) are derived at the lattice level and hence are mesoscopic
in nature. For single crystal, homogeneous materials with uniform effective fields, the relations can
be extrapolated throughout the material to yield constitutive models quantifying the hysteretic and
nonlinear dependence of the bulk polarization P on input fields E. Macroscopic models constructed
in this manner retain the sharp transition through the coercive point exhibited by the kernels (4) or
(8). While this models the physical behavior of certain single crystal compounds such as BaTiO3 —
e.g., see page 76 of [21] — the transition is steeper than that typically exhibited by nonhomogeneous,
polycrystalline compounds. To provide macroscopic E-P models appropriate for this broader class
of compounds, stochastic homogenization techniques utilizing the mesoscopic relations (4) or (8) as
kernels are considered in the next section.

2.2 Macroscopic Polarization Models

The local average polarization relations (4) and (8) were derived under the assumption of a uniform
lattice and constant effective field Ee = E. Hence they do not incorporate variability in the lattice due
to nonuniform grain structure, material nonhomogeneities and defects, and variable stress fields nor
do they include the effects of nonuniform interaction or effective fields. These effects can in theory be
incorporated through micromechanical models utilizing extended energy relations [5, 6, 16]. However,
this produces models whose complexity precludes bulk material characterization, transducer design or
model-based control design. Alternatively, one can assume that certain parameters in the mesoscopic
energy relations are manifestations of underlying stochastic distributions rather than constant values
as posited for single crystals having uniform lattices. Stochastic homogenization in this manner
produces macroscopic models which retain energy characteristics but are sufficiently low-order to
permit implementation.

As noted in [32], variability in the lattice can be incorporated by considering the parameters
PR, PI or

Ec = η(PR − PI)

to be distributed, whereas variable interaction fields can be incorporated by considering effective
fields Ee to be distributed about the applied field E. In this section, we summarize the models of
[32] based on a priori choices for the distributions whereas in Section 3, we consider the development
of models having general densities estimated through fits to experimental data.

As illustrated in Figure 2, the coercive field Ec is nonnegative which constitutes a constraint on
the underlying density. Two a priori choices which enforce this constraint are normal distributions
truncated to include only nonnegative values and lognormal distributions. The latter are employed
in [32] which yield the density

ν1(Ec) = c1e
−[ln(Ec/Ec)/2c]2 (13)

where c1, c and Ec are positive constants. It is illustrated in [9] that if c is small compared with Ec,
the mean and variance for the distribution have the approximate values

〈Ec〉 ≈ Ec , σ ≈ 2Ec c . (14)

It is illustrated in the examples of Section 4 that (14) provides initial estimates for the parameters
Ec and c based on measured properties of the data. We note that lognormal distributions of the form
(13) are employed when quantifying the distribution of the critical field parameter Hk in Preisach
models used to model hard magnetic materials [9] which provides additional motivation for their
consideration in the present setting.

Secondly, we consider variations in the effective field at the lattice level. As noted in [1, 20, 30, 31],
the applied field E is augmented by an interaction field Ei due to neighboring dipoles as well as
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certain electromechanical interactions. While microelectric energy analysis can quantify some of
these mechanisms, the required complexity of subsequent models precludes transducer design or real
time control implementation. Alternatively, we make the a priori assumption that effective fields
Ee = E + Ei are distributed about the applied field with an underlying density characteristic of the
ferroelectric material under consideration. The models employed in [32] are based on the assumption
that Ee is normally distributed about E with the density

ν2(Ee; E) = c2e
−(E−Ee)2/2b2 . (15)

The magnitude of the variance b2 dictates the degree to which switching occurs prior to the remanence
polarization. Large values of b2 produce models with significant switching as the applied field E is
reduced to zero with correspondingly large changes in the slope of the hysteresis curve whereas small
values of b2 are employed when modeling the hysteretic response of materials exhibiting nearly linear
E-P behavior at remanence.

The resulting polarization model is

[P (E)](t) = C

∫ ∞

0

∫ ∞

−∞
[P (E + Ei, Ec, ξ)](t)e−E2

i /2b2e−[ln(Ec/Ec)/2c]2dEidEc (16)

where the kernel P is specified by (3), (4) or (8) and ξ denotes the initial distribution of dipoles.

2.3 Discrete Macroscopic Polarization Model

To implement the model (16), it is necessary to approximate the integrals. As detailed in [32], this
can be accomplished either by employing Gaussian quadrature routines constructed for infinite or
semi-infinite domains or by exploiting the decay exhibited by the kernels to truncate the domains
and employ Gauss-Legendre quadrature rules. Both strategies yield discrete models of the form

[P (E)](t) = C

Ni∑
i=1

Nj∑
j=1

[P (E + Eij ; Eci , ξi)](t)e
−E2

ij
/b

e−[ln(Eci/Ec)/2c]2viwj (17)

where Eij , Eci denote the abscissas associated with respective quadrature formulae and vi, wj are the
respective weights — e.g., see pages 698–699 of [37].

For the characterization examples presented in Section 4, as well as in [32], we employ a composite,
4 point Gauss-Legendre quadrature rule constructed for truncated domains, and we illustrate that
approach here. Consider first the approximation of the effective field integral. For a given threshold
ε and index Nq, we let [−L, L] denote the interval where |e−E2

i | ≥ ε and consider the partition
hq = −L + qh, h = 2L/Nq. On each subinterval [hq−1, hq], the quadrature points and weights are
specified to be

Eiq1 = hq−1 + h

[
1
2 −

√
15+2

√
30

2
√

35

]
, wq1 = 49h

12(18+
√

30)

Eiq2 = hq−1 + h

[
1
2 −

√
15−2

√
30

2
√

35

]
, wq2 = 49h

12(18−√30)

Eiq3 = hq−1 + h

[
1
2 +

√
15−2

√
30

2
√

35

]
, wq3 = 49h

12(18−√30)

Eiq4 = hq−1 + h

[
1
2 +

√
15+2

√
30

2
√

35

]
, wq4 = 49h

12(18+
√

30)
.

(18)
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Similar analysis yields the quadrature points Ecpk
and weights vpk for the approximation of the

coercive field integral on a grid with Np subintervals. In this case, Ni = 4Np, Nj = 4Nq, and the
formulation (17) has the specific form

[P (E)](t) = C

Np∑
p=1

4∑
k=1

( Nq∑
q=1

4∑
`=1

[P (Eiq`
+ E; Ecpk

, ξq`)](t)e
−E2

iq`
/2b2

wq`

)
e−[ln(Ecpk

/Ec)/2c]2vpk. (19)

Details regarding the discrete formulation model and a highly efficient implementation algorithm are
provided in [32].

We note that for the linear kernel P given by (3) or (4), construction of the model using this
a priori choice of normal and lognormal distributions entails the identification of 6 parameters. The
parameters PR and η arise in the definition of the kernel whereas Ec, c, b and C are associated with
the construction of the density functions ν1 and ν2. We note that for this choice of kernel, PR and
C both scale final polarization values and hence can be combined into a single effective parameter.
Thus for materials in which the normal and lognormal densities provide sufficient accuracy, the low
number and physical nature of parameters makes the model highly efficient to construct and update.

3 Polarization Model with General Densities

Whereas certain physical arguments motivate consideration of the normal and lognormal distributions
for the effective and coercive fields, we rely primarily on their mathematical attributes including the
easily quantified relations between properties of the data — including the coercivity and degree of
pre-remanence switching — and mean and variance properties of the densities. Moreover, as long as
the densities enforce positive arguments for the coercive field and exhibit certain decay properties,
there is no physical reason why normal and lognormal functions are inherently preferable to general
densities which provide substantially greater flexibility for model construction. We thus consider the
formulation of the polarization model in terms of general densities and indicate techniques suitable for
estimating the densities. The attributes of models constructed using general densities are compared
with those based on the a priori assumption of normal and lognormal distributions in Section 4.

3.1 Polarization Model

We consider general densities ν1 and ν2 which satisfy the conditions

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x , |ν2(x)| ≤ c2e

−a2x

(20)

for nonnegative c1, a1, c2, a2. The restricted domain in (i) reflects the fact that the coercive field
Ec is positive whereas the symmetry enforced in the effective field through (ii) yields the symmetry
observed in low-field Rayleigh loops. Hypothesis (iii) incorporates the physical observation that
the coercive and interactions fields decay as a function of distance and guarantees that integration
against the piecewise linear kernel yields finite polarization values.

The general polarization model can then be formulated as

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(Ei)[P (E + Ei; Ec, ξ)](t) dEi dEc

=
∫ ∞

0

∫ ∞

−∞
ν(Ec, Ei)[P (E + Ei; Ec, ξ)](t) dEi dEc

(21)
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where P is specified in (3), (4) or (8). Whereas formulation of the model in terms of the two-
dimensional density ν is more general, retention of the components ν1 and ν2 can facilitate subsequent
implementation.

The approximation of the integrals yields the discrete model

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

ν1(Eci)ν2(Eij )[P (E + Eij ; Eci , ξ)](t)viwj (22)

where vi, wj denote the quadrature points and Eci , Eij are the abscissas for the given quadrature
rule.

To illustrate attributes of the discrete model (22), we compare it with the model (17) derived
under the a priori assumption that

ν1(Ec) = c1e
−[ln(Ec/Ec)/2c]2

ν2 = c2e
−E2

i /b.
(23)

The construction of (17) requires the identification of the 5 parameters η, C,Ec, c and b once PR is
combined with C. The construction of the model (22) in terms of ν1 and ν2 requires the identification
of the Ni + Nj + 1 parameters [ν1(Ec1), · · · , ν1(EcNi

)], [ν2(Ei1), · · · , ν2(EiNj
)] and η. If one employs

the product density ν, discretization yields Ni ·Nj + 1 parameters since one must identify all of the
values ν(Eci , Eij ) in this formulation. Since one typically requires Ni and Nj on the order of 20 to 80
to achieve convergence, the identification of the general densities using either the isolated densities
ν1 and ν2, or the product density ν, requires highly efficient optimization and parameter estimation
techniques.

The advantage gained through this effort is the construction of models which are highly accurate
for a wide range of drive regimes. It is important to note that whereas the general density model
(23) may be more expensive to construct than the model (17), the implementation of the two models
requires identical overhead since both simply employ multiplication of Ni × 1 and Nj × 1 vectors.
Hence they will be equally efficient for model-based control design.

3.2 Estimation of ν1 and ν2 through Constrained Optimization

To estimate the Ni + Nj + 1 parameters [ν1(Ec1), · · · , ν1(EcNi
)], [ν2(Ei1), · · · , ν2(EiNj

)] and η, we

consider a least squares fit to data (Êk, P̂k), k = 1, · · · , Nd. The accuracy of resulting models will
be improved if the data is chosen to include all drive regimes under consideration and, in general,
inclusion of a highly varied set of drive regimes will provide more comprehensive characterization
of the densities. For example, identification of the densities solely based on symmetric major loop
data will provide a model which has moderate accuracy when predicting biased minor loops whereas
identification using data that includes biased drive level data will provide a model with improved
accuracy in these regimes.

To formulate the constrained optimization problem, we define θ = [η, ν1(Ec1), · · · , ν1(EcNi
),

ν2(Ei1), · · · , ν2(EiNj
)] ∈ lRNi+Nj+1 and let P (Êk; θ) denote the modeled parameter-dependent polar-

ization values given by (22) for the Nd input field values Êk. The constrained optimization problem
can then be formulated as follows: find θ ∈ lRNi+Nj+1 which minimizes

f(θ) =
1
2
‖P (Êk; θ)− P̂k‖2 (24)

9



subject to
θi ≥ 0.

Here ‖ · ‖ denotes the Euclidean norm in lRNd . For the general formulation (24), optimization can
be performed using the Matlab routine fmincom.m, or other optimization routines which enforce the
positivity constraint for moderate values of Ni and Nj — e.g., Ni = Nj = 80. We note that solution of
(24) is analogous to the technique employed in [34] for estimating parameters in discretized Preisach
models.

3.3 Estimation of ν — Direct Solution Algorithm

Alternatively, one can consider the more general formulation

[P (E)](t) =
∫ ∞

0

∫ ∞

−∞
ν(Ec, Ei)[P (E + Ei; Ec, ξ)](t) dEi dEc, (25)

where ν : lR2 → lR is a general density function to be estimated for a given compound, and discretized
relation

[P (E)](t) =
Ni∑
i=1

Nj∑
j=1

ν(Eci , Eij )[P (E + Eij ; Eci , ξ)](t)viwj . (26)

This formulation has the advantage that it yields a linear system in terms of ν. Furthermore, it
yields a quadratic programming problem when the discrete model (26) is employed in a least squares
setting but it comes at the cost of estimating Ni ·Nj unknowns as compared with the Ni + Nj + 1
variables required for the nonlinear constrained optimization problem discussed in Section 3.2 — we
assume here that η can be estimated directly from the slope dP

dE of data after switching.
In the absence of thermal relaxation, evaluation of (3) at the measured input field values Êk

yields

P (Ek) =
Nj∑
j=1

Ni∑
i=1

[
Êk + Eij

η
+ PRδ(Êk; Eci , Eij )

]
ν(Eci , Eij )viwj (27)

for k = 1, · · · , Nd. For clarity, we note the dependence of δ on the coercive field quadrature points.
To formulate (27) as a linear system, we define the Ni×Nj matrices Ak and Φ to have components

[Ak]ij =

[
Êk + Eij

η
+ PRδ(Êk; Eci , Eij )

]
viwj

[Φ]ij = ν(Eci , Eij ).

(28)

For N = Ni ·Nj , we define the N × 1 vector θ and 1×N vector ak by

θ = vec(Φ) , ak = [vec(Ak)]T (29)

where ‘vec’ denotes the vector concatenation of the respective matrices. Additionally, the Nd × 1
vectors P and P̂ are defined componentwise by

[P]k = P (Êk) , [P̂]k = P̂k. (30)

Finally, the Nd ×N matrix A is defined row-wise by

[A]k = ak.

10



The polarization model (27) can then be formulated as the linear system

Aθ = P (31)

and the least squares problem used to identify the density values θ given measurements {Êk, P̂k}, k =
1, · · · , Nd, is the following: minimize

f(θ) =
1
2
‖Aθ − P̂‖2 (32)

subject to
θj ≥ 0 , j = 1, · · · , N.

Because the minimum is unaffected by a constant shift, this is equivalent to the problem

min
θ

f(θ) , f(θ) =
1
2
θT AT Aθ − P̂T Aθ

subject to θj ≥ 0 , j = 1, · · · , N.

(33)

To solve (33), we employ the same technique used in [28] for identifying density functions in
Preisach models. Consider the singular value decomposition

AT A = USV T , (34)

where U = V since AT A is symmetric, and the N×N diagonal matrix S is comprised of the singular
values of AT A. Furthermore, it is noted that the column vectors ui of U satisfy the orthogonality
condition

uT
i uj = δij (35)

where δij denotes the Kronecker delta.
We consider the case rank(A) = rank(S) = q < min{N, Nd} which arises when considering fine

discretizations to fully resolve fine-scale properties of the hysteretic response. For this case, we
eliminate the rows and columns of S and U corresponding to zero singular values to obtain the q× q
matrix Ŝ and N × q matrix Û . If instability due to ill-conditioning induced by small singular values
is of concern, one can alternatively retain singular values greater than a specified threshold ε along
with corresponding components in U — this is the basis for the truncated SVD (TSVD) techniques.

Because
AT A = Û ŜÛT , ÛT Û = I,

the minimization problem (33) can be reformulated as

min
x

f(x) , f(x) =
1
2
xT Ŝx− P̂T AÛx

subject to g(x) = Ûx ≥ 0
(36)

where x = ÛT θ and hence θ = Ûx. The quadratic programming problem (36) can be solved using
the Matlab routine quadprog.m to obtain x∗, and a corresponding solution θ∗ to (33) is then given
by θ∗ = Ûx∗.
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3.4 Estimation of ν — Regularized Solution

It is shown in [29] that the polarization model (25) is an integral equation having a compact integral
operator. Hence the inverse problem of determining ν given data measurements is ill-posed both
with regard to the existence of a unique solution and the continuous dependence of ν on the data.
It is illustrated in the validation example of Section 4.3 that this ill-posedness is manifested in the
discretized formulation (26) through a loss in accuracy as discretization limits are increased. This
motivates the consideration of regularized least squares formulations for determining ν.

As detailed in [29], Tikhonov regularization is imposed by replacing the least squares functional
(32) by the augmented functional

fα(θ) =
1
2
‖Aθ − P̂‖2 +

α

2
‖θ‖2 (37)

which shifts the spectrum of AT A to AT A + αI to avoid the deleterious effects of small singular
values. The constrained minimization problem in this case is

min
θ

fα(θ) , f(θ) =
1
2
‖Aθ − P̂‖2 +

α

2
‖θ‖2

subject to θj ≥ 0, j = 1, . . . , N.

(38)

Techniques for choosing α to avoid oversmoothing solutions as well as a solution algorithm for (38)
can be found in Vogel [36].

4 Model Validation

To illustrate attributes of the model and the flexibility provided by the formulation in terms of gen-
eral densities, we consider the characterization of PZT5H and PZT4. The PZT5H example illustrates
the capability of the model to accurately characterize biased minor loops under quasistatic drive con-
ditions. An important attribute of the model is its capability for ensuring closure of the loops under
such conditions in accordance with experimental behavior of the materials. The PZT4 example illus-
trates the predictive capabilities for the model for a hard PZT compound. In both cases, we employ
the polarization kernel (3) or (4) since relaxation mechanisms are negligible. For operating regimes in
which relaxation must be accommodated, the kernel (8) would be employed in an analogous manner.

4.1 PZT4 Characterization

We consider first the characterization of constitutive nonlinear and hysteresis exhibited by PZT4.
Data was collected from a 3.81 cm × 0.635 cm × 0.381 cm wafer at 200 mHz to minimize frequency
effects. The measured E-P relations corresponding to peak input voltages ranging from 600 V to
1800 V are plotted in Figure 3. Note that the relation between E and V can be approximated by
E = V/h where h = 3.81 × 10−4 is the thickness of the wafer. To demonstrate properties of the
model using both the normal/lognormal and general densities and differing identification strategies,
we consider four regimes:

(i) normal/lognormal densities estimated using all four data sets;
(ii) general densities estimated using all four data sets;
(iii) normal/lognormal densities estimated using the 1800 V data set;
(iv) general densities estimated using the 1800 V data set.

In all cases, convergence was achieved with Np = Nq = 20 which yields the parameter limits Ni =
Nj = 80.
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Lognormal/Normal Densities — Identification Using 600 V - 1800 V Data

To provide a baseline for comparison, we take ν1 and ν2 as the lognormal and normal functions
specified in (23) and employ four data sets — 600 V, 1000 V, 1200 V and 1800 V — when estimating
the parameters PR, η, Ec, c, b and C. The resulting model response, is compared with the data in
Figure 3. The coercive and effective field densities ν1 and ν2 are plotted in Figure 4. It is observed
that the model is reasonably accurate throughout the drive range which is to be expected since all
four data sets were employed when estimating parameters. The accuracy is quantified by the residual

R =

[
1

Nd

Nd∑
k=1

|P (Êk)− P̂k|2
]1/2

(39)

between the modeled response and polarization data at the specified input field values which, as
summarized in Table 1, is 0.0226.

(i) (ii) (iii)

General Densities 0.0176 0.0383 0.0113
Lognormal/Normal Densities 0.0226 0.0533 0.0164

Table 1: ResidualsR given by (39). (i) Identification and residuals over four data sets (600 V - 1800 V
data). (ii) Identification using 1800 V data — residual for all four data sets. (iii) Identification using
1800 V data — residual for 1800 V data.

−5 0 5
−0.5

0

0.5
600 V

−5 0 5
−0.5

0

0.5
1000 V

−5 0 5
−0.5

0

0.5
1200 V

−5 0 5
−0.5

0

0.5
1800 V

Figure 3: PZT4 data (– – –) and model predictions (——) with lognormal/normal densities for ν1

and ν2 and parameters estimated through a least squares fit to all four data sets. Abscissas: electric
field (MV/m), ordinates: polarization (C/m2).
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Figure 4: Lognormal coercive field density ν1 and effective field density ν2 given by (23) with pa-
rameters estimated through a least squares fit to 600 V – 1800 V data.

General Densities — Identification Using 600 V - 1800 V Data

We now assume that ν1 and ν2 are general functions satisfying the hypotheses (20) and we
estimate the Ni + Nj + 1 parameters [ν1(Ec1), · · · , ν1(EcNi

)], [ν2(Ei1), · · · , ν2(EiNj
)] and η, through

the solution of the constrained least squares problem (24). The resulting model fits are plotted in
Figure 5 and the estimated densities are plotted in Figure 6. A comparison between Figures 3 and 5
indicates that the model with general densities is more accurate as quantified by the residual of 0.0176
which is approximately 60% that obtained using the a priori choice of lognormal and normal densities
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Figure 5: PZT4 data (– – –) and model predictions (——) obtained with the general densities ν1

and ν2 estimated through a constrained least squares fit to all four data sets. Abscissas: electric field
(MV/m), ordinates: polarization (C/m2).

14



0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

x 10
−11

Coercive Field (MV/m)

S
ca

le
d 

D
en

si
ty

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Effective Field (MV/m)

S
ca

le
d 

D
en

si
ty

Figure 6: Coercive field density ν1 and effective field density ν2 estimated using all four data sets.

— see Table 1. A comparison between the coercive and effective field densities and those plotted in
Figure 4 illustrates that the general densities have a qualitative shape similar to the lognormal and
normal densities but are significantly less regular and do not exhibit the same monotonicity.

Lognormal/Normal Densities — Identification Using 1800 V Data

The third case consists of identification of the lognormal and normal densities using the 1800 V
data and subsequent model predictions at the 600 V, 1000 V and 1200 V levels. This yielded the
model responses plotted in Figure 7. A comparison between these results and those plotted in
Figure 3 illustrates a slightly improved fit at 1800 V but a significantly worse fit at 600 V. This is
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Figure 7: PZT4 data (– – –) and model predictions (——) with lognormal/normal densities for ν1

and ν2 and parameters estimated through a least squares fit to the 1800 V data. Abscissas: electric
field (MV/m), ordinates: polarization (C/m2).
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reflected in the residual of 0.0533 which is more than a factor of two worse than when all four data
sets are employed for parameter estimation. This illustrates that while the model has substantial
predictive capabilities, improved performance can be obtained by estimating parameters using data
from a range of drive regimes.

General Densities — Identification Using 1800 V Data

To complete the repertoire, we consider the identification of the general densities ν1 and ν2

through solution of the constrained minimization problem (24) using only the 1800 V data. A
comparison of the resulting model fits in Figure 8 with those in Figure 5 illustrates an improved
and highly accurate fit to the 1800 V data, reasonable predictions at 1000 V and 1200 V, and
only moderately accurate predictions at 600 V. As noted in Table 1, the residual of 0.0383 over all
four data sets is larger than those obtained with either general densities or the a priori choice of
lognormal/normal densities when all four data sets are employed for identification but is significantly
smaller than the lognormal/normal model fit when identifying parameters using only the 1800 V data.
This same tendency is noted in the residuals over only the 1800 V data.
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Figure 8: PZT4 data (– – –) and model predictions (——) obtained with the general densities ν1

and ν2 estimated through a constrained least squares fit to the 1800 V data. Abscissas: electric field
(MV/m), ordinates: polarization (C/m2).

4.2 PZT5H Characterization — Individual Densities ν1 and ν2

The second compound we consider is PZT5H which exhibits the hysteretic and nonlinear behavior
shown in Figure 1. In this case, we illustrate the capability of the model to accurately quantify
biased minor loop behavior in quasistatic drive regimes — data was collected at 0.2 Hz. We again
consider four cases to illustrate the performance of the model constructed with general densities as
compared with the model employing lognormal/normal densities:
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(i) General densities — identified through fit to all 7 loops;
(ii) Normal/lognormal densities — identified through fit to all 7 loops;
(iii) General densities — identified through fit to symmetric major loop and Rayleigh loop;
(iv) Normal/lognormal densities — identified through fit to major loop and Rayleigh loop.

Convergence was achieved in all cases with a total of Ni = Nj = 80 quadrature points.

General Densities — Identification Using Full Data Set

We first consider the model performance when the full set of data (all 7 loops) was used to
estimate the Ni +Nj +1 parameters [η, ν1(Ec1), · · · , ν1(EcNi

), ν2(Ei1), · · · , ν2(EiNj
)] through solution

of the nonlinear constrained optimization problem (24) which enforces positivity in all Ni + Nj + 1
parameters and symmetry in ν2. The resulting model fit is plotted in Figure 9 and the densities
ν1 and ν2 are shown in Figure 10. It is observed that the model accurately characterizes both the
symmetric major loop behavior and the biased minor loop responses including the nested biased
minor loop. The slight oscillations in the model fit preceding saturation result from the optimization
of the densities to accommodate minor loop behavior and are not a manifestation of numerical
stability for large stepsizes in the input fields. For later comparison with fits obtained using the
lognormal/normal densities, the residual (39) is noted to be R = 0.0057 as summarized in Table 2.

It should be noted that when traversing from the endpoint of the biased minor loop to the
saturation value, no a priori knowledge of the connection point is required by the model. The
discontinuous change in slope ∂P

∂E is automatically incorporated by the combination of energy-based
hysterons or kernels and the densities used to incorporate material and field nonhomogeneities.
The automatic enforcement of the ‘deletion’ property when exiting minor loops is important both
for material characterization and the development of model-based compensators for linear feedback
control design.

Lognormal/Normal Densities — Identification Using Full Data Set

Using the full set of data from the 7 loops, we also estimated the parameters η, c, b, C and
Ec in the discretized model (17) in which ν1 and ν2 are specified as the lognormal density (13)
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Figure 9: PZT5H data and model with general densities ν1 and ν2 estimated through a fit to full
data set.
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(i) (ii) (iii)

General Densities ν1, ν2 (Ni = Nj = 80) 0.0057 0.0115 0.0050
Lognormal/Normal Densities ν1, ν2 0.0132 0.0136 0.0094
General Product Density ν (Ni = Nj = 24) 0.0028 — —
General Product Density ν (Ni = Nj = 48) 0.0106 — —
General Product Density ν – Regularized (Ni = Nj = 24) 0.0037 — —
General Product Density ν – Regularized (Ni = Nj = 48) 0.0024 — —

Table 2: ResidualsR given by (39) with ν1, ν2 estimated using the nonlinear constrained minimization
algorithm (24) and ν identified through the quadratic programming algorithm (33) and regularized
formulation (38). (i) Identification and residuals over all 7 data sets. (ii) Identification using major
symmetric and Rayleigh loops — residual for all 7 data sets. (iii) Identification using major symmetric
and Rayleigh loops — residual for major symmetric and Rayleigh loops.

and normal density (15). This yields the parameter values η = 8.9 × 106, Ec = 7.6 × 105 V/m,
c = 0.237 V2/m2, b = 1.26 × 105 V2/m2, C = 1.4 × 10−12 and resulting model fit presented in
Figure 11. The corresponding densities are plotted in Figure 12. A comparison between Figure 11
and Figure 9 illustrates a significant loss of accuracy when characterizing the minor loop behavior
with this a priori choice of densities. This is quantified by the residual of R = 0.0132 which is over
twice the residual obtained with general densities.

A comparison between the general densities plotted in Figure 10 and the lognormal/normal
densities plotted in Figure 12 indicates the same tendency observed in Section 4.1 for PZT4 —
the two sets of densities exhibit the same general qualitative behavior but the general densities are
significantly less regular than the lognormal and normal functions.

General Densities — Identification Using Symmetric Major and Rayleigh Loop Data

To illustrate the predictive properties of the model with densities estimated from limiting data,
we consider model construction using data from the symmetric major loop and Rayleigh loop. As
illustrated in Figure 13, the resulting model fit to these two loops is highly accurate as quantified by
the residual R = 0.0050 over just these loops. The model predictions for the remaining biased minor
loops is less accurate, however, than that obtained when the full data set was used for identification —
see Figure 9. This loss of accuracy is quantified by the total residual R = 0.0115 which, as compiled
in Table 2, is over twice that obtained when the full data set was employed for identification.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x 10
−6

Coercive Field (MV/m)

S
ca

le
d 

D
en

si
ty

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5
x 10

−6

Effective Field (MV/m)

S
ca

le
d 

D
en

si
ty

Figure 10: Coercive and effective field densities estimated through a fit to full data set.
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Figure 11: PZT5H data and model prediction with lognormal density ν1 and normal density ν2

having parameters estimated through a fit to full data set.

Finally, we note that because the accuracy of biased minor loops in this regime is highly dependent
on the accuracy of the excursion point, even minor discrepancies in the symmetric loop fit can
translate into large minor loop errors in regions having a large gradient ∂P

∂E .

Lognormal/Normal Densities — Identification Using Major and Rayleigh Loop Data

In the final case, a least squares fit to the symmetric major and Rayleigh loop data was used
to estimate the parameters η = 1.0 × 107, Ec = 7.6 × 105 V/m, c = 0.239 V2/m2, b = 1.22 ×
105 V2/m2, C = 1.4 × 10−12 in the discretized model (17) constructed using the lognormal and
normal densities. The model behavior, plotted in Figure 14, indicates a loss of accuracy in both the
fitted loops and the predictions of biased minor loop behavior. This is substantiated by the residual
values of 0.0094 over the fitted loops and 0.0136 over the full data set. Hence while the model
constructed using the lognormal and normal densities is sufficiently accurate for many applications,
a significant improvement in accuracy is provided by the identification of general densities using more
comprehensive data sets.
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Figure 12: Lognormal coercive and normal effective field densities estimated through a fit to full
data set.
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Figure 13: PZT5H data and model predictions with general densities ν1 and ν2 estimated through a
fit to symmetric major and Raleigh loop data.

4.3 PZT5H Characterization — Product Density ν

In Section 3.3 we summarized a solution technique for estimating the product density ν based on
exploiting the linear parameterization to reformulate the constrained minimization problem as the
quadratic programming problem (36). This offers the advantage of providing a well-established
solution framework but has the disadvantage of significantly increasing the number of parameters —
Ni ·Nj versus Ni + Nj + 1 — and can be prone to ill-conditioning.

We illustrate in this example the use of this formulation to estimate ν in (25) using all 7 loops
of the PZT5H data originally plotted in Figure 1. To assess the effects of conditioning, we consider
two discretization levels — Np = Nq = 6 (Ni = Nj = 24) and Np = Nq = 12 (Ni = Nj = 48) —
both of which are relatively coarse. The model fits and estimated product densities for the two cases
are plotted in Figure 15 and 16. As summarized in Table 2, the 7-loop residuals for Ni = Nj = 24
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Figure 14: PZT5H data and model prediction with lognormal density ν1 and normal density ν2

having parameters estimated through a fit to symmetric major and Raleigh loop data.
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Figure 15: PZT5H data and model prediction with general product density ν estimated using the
quadratic programming formulation (34) with data from all 7 loops. (a) Ni = Nj = 24, and (b)
Ni = Nj = 48.

and Ni = Nj = 48 are respectively 0.0028 and 0.0106. The fits in Figure 15 in combination with
the residual values lead to the following conclusions: (i) the accuracy with the coarse discretiza-
tion Ni = Nj = 24 is comparable to that obtained through solution of the nonlinear constrained
optimization problem (24) as illustrated in Figure 9, and (ii) the accuracy degrades significantly as
discretization levels are refined. The latter reflects the inherent ill-conditioning associated with the
algorithm.

The densities plotted in Figure 16 demonstrate the validity of the decay assumption (iii) in (20)
and restriction of the solution operator to compact domains.

Hence while this approach can be highly accurate and relatively efficient for certain discretization
levels, care must be taken to avoid degradation in accuracy which can occur as quadrature levels
and associated parameter numbers are increased. This motivates consideration of the regularized
formulation (38) which is illustrated in Section 4.4.
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Figure 16: General product density ν with (a) Ni = Nj = 24, and (b) Ni = Nj = 48.
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4.4 PZT5H Characterization — Product Density ν

The regularized least squares formulation (38) stabilizes the pseudoinverse associated with the inverse
problem by shifting singular values away from the origin. The model fits obtained using (38) with
α = 5 × 1020 for Ni = Nj = 24 (N = 576) and Ni = Nj = 48 (N = 2304), using data from all
7 loops, are illustrated in Figure 17. The corresponding residuals R = 0.0037 for Ni = Nj = 24
and R = 0.0024 for Ni = Nj = 48 demonstrate improved accuracy as N = Ni · Nj is increased
which is in contrast with the behavior for the unregularized algorithm. Hence it is observed that
regularization in this manner eliminates the instability illustrated in Figure 15 for increasing N and
yields highly accurate model representations. Further details illustrating the formulation and effect
of regularization techniques for integral hysteresis models are provided in [29].
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Figure 17: PZT5H data and model prediction with general product density ν estimated using
Tikhonov regularization with data from all 7 loops. (a) Ni = Nj = 24, and (b) Ni = Nj = 48.

5 Concluding Remarks

In this paper, we have presented a general framework for quantifying hysteresis and constitutive
nonlinearities inherent to ferroelectric compounds by combining aspects of the homogenized free
energy framework developed in [32] and general Preisach models employing general densities or
measures [10, 24, 25, 28]. In the first step of the development, Helmholtz and Gibbs energy relations
are constructed at the lattice level. By directly enforcing necessary conditions to minimize energy
for regimes in which thermal relaxation mechanisms are negligible, employing Boltzmann theory
to balance the relative thermal energy and Gibbs energy, we then construct mesoscale polarization
relations. These relations can subsequently be extrapolated to provide suitable macroscopic models
for homogeneous, single crystal compounds. For nonhomogeneous, polycrystalline materials with
variable effective fields, the local relations provide kernels or hysterons which serve as a basis with
material and field variations incorporated through the assumption that local coercive and effective
field parameters are manifestations of underlying stochastic distributions rather than constants. In
the original development [32], models were based on the a priori assumption of lognormal and normal
densities for the coercive and effective fields whereas we employ here general densities which are
estimated through fits to experimental data. This provides the models with the flexibility of Preisach
models while retaining the advantages associated with the energy formulation for the hysterons.
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Form a theoretical perspective, the models incorporate reversibility and incorporate certain rate
and temperature-dependencies directly into the polarization kernel or hysteron. Furthermore, they
guarantee closure of biased minor loops in quasistatic or low frequency drive regimes, and ensure the
‘deletion’ property, but permit accommodation and after-effects. As detailed in [9] in the context
of magnetic materials, several of these properties are not inherent to classical Preisach models and
require extensions that diminish the efficiency of extended Preisach formulations for transducer design
and model-based control design.

The extension of the theory in [32] through formulation in terms of general densities rather than
a priori choices of lognormal and normal densities has significant ramifications from the perspective
of both material characterization and control design. For material characterization, formulation in
terms of general densities provides additional accuracy for certain hard materials and drive regimes
involving multiple biased minor loops as illustrated in the context of PZT4 and PZT5H data. For
model-based control design, the advantages are even more profound — the model formulated in terms
of general densities exhibits a linear dependence on the parameters whereas the model constructed
from lognormal and normal densities exhibits a nonlinear dependence on parameters. In the latter
case, one is limited to nonlinear adaptive parameter estimation techniques of the type developed
in [14, 15, 22] and there are few options if considering adaptive control design. For the linear
parameterization associated with the general density formulation, one can consider a broad range of
adaptive identification and control designs [13, 35] which extends significantly the flexibility of the
method.

It should be noted that whereas the identification of general densities using constrained optimiza-
tion algorithms can be significantly more expensive than identification of parameters in the lognormal
and normal densities, the two formulations are equally efficient to implement once parameters have
been identified. Hence both formulations are viable for subsequent use in material characterization,
transducer and system design, and model-based control design and implementation.
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